Preview

Онкопедиатрия

Расширенный поиск

Опухоль Вильмса: синдромальная и молекулярная диагностика

https://doi.org/10.15690/onco.v4i4.1814

Полный текст:

Аннотация

При опухоли Вильмса нередко выявляются генотипически-фенотипические корреляции. Детекция мутации по фенотипу дает возможность прогнозировать заболевание,  индивидуализировать программу лечения с учетом всех рисков развития того или иного  осложнения терапии. В статье представлены сведения об основных синдромах и  генетически детерминированных заболеваниях, ассоциированных с развитием опухоли  Вильмса. Высокий риск развития опухоли Вильмса (>20%) имеют пациенты с некоторыми  WT1-ассоциированными синдромами (включая WAGR и Дениса–Драша), синдромом Перлмана, мозаичной перемежающейся анеуплоидией и анемией Фанкони с  биаллельной BRCA2- мутацией. Умеренный риск развития нефробластомы (5–20%) отмечен  в группах детей с синдромами Фрейзера, Беквита–Видемана, развившимися вследствие  дисомии 11p15, и синдромом Симпсона–Голаби–Бемеля. К группе низкого риска развития  нефробластомы (<5%) отнесены больные с изолированной гемигипертрофией, синдромами  Блума и Ли–Фраумени, врожденным гиперпаратиреозом в сочетании с опухолями челюстей, нанизмом MULIBREY и различными хромосомными аберрациями. Развитие молекулярной  биологии в будущем позволит разработать новые подходы к персонализированному  лечению с добавлением в программы молекулярной таргетной терапии для пациентов с высоким риском рецидива заболевания.

Об авторах

С. А. Кулева
Национальный медицинский исследовательский центр онкологии им. Н.Н. Петрова
Россия

доктор медицинских наук, ведущий научный сотрудник научного отдела инновационных методов терапевтической онкологии  и реабилитации, заведующая отделением химиотерапии и  комбинированного лечения злокачественных опухолей у детей ФГБУ  «НМИЦ онкологии им. Н.Н. Петрова» Минздрава России

Адрес: 197758, Санкт-Петербург, пос. Песочный, ул. Ленинградская, д. 68, тел.: +7 (812) 439-95-10, SPIN-код: 3441-4820



Е. Н. Имянитов
Национальный медицинский исследовательский центр онкологии им. Н.Н. Петрова
Россия

доктор медицинских наук, профессор, руководитель лаборатории молекулярной онкологии ФГБУ «НМИЦ онкологии им. Н.Н. Петрова» Минздрава России

Адрес: 197758, Санкт-Петербург, пос. Песочный, ул. Ленинградская, д., SPIN-код: 1909-7323



Список литературы

1. Gleason JM, Lorenzo AJ, Bowlin PR, Koyle MA. Innovations in the management of Wilms’ tumor. Ther Adv Urol. 2014;6(4):165–176. doi: 10.1177/1756287214528023.

2. Wilms M. [Die Mischgeschwülste der Niere. In: Die Mischgeschwülste. (In German).] Leipzig: Verlag von Arthur Georgi; 1899.

3. Rivera MN, Haber DA. Wilms’ tumour: connecting tumorigenesis and organ development in the kidney. Nature Reviews Cancer. 2005;5(9):699–712. doi: 10.1038/nrc1696.

4. Breslow NE, Beckwith JB, Perlman EJ, Reeve AE. Age distributions, birth weights, nephrogenic rests, and heterogeneity in the pathogenesis of Wilms tumor. Pediatr Blood Cancer. 2006;47(3):260–267. doi: 10.1002/pbc.20891.

5. Stiller CA, Parkin DM. International variations in the incidence of childhood renal tumors. Br J Cancer. 1990;62(6):1026–1030. doi: 10.1038/bjc.1990.432.

6. Beckwith JB, Kiviat NB, Bonadio JF. Nephrogenic rests, nephroblastomatosis, and the pathogenesis of Wilms’ tumor. Pediatr Pathol. 1990;10(1–2):1–36. doi: 10.3109/15513819009067094.

7. Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68(4):820–823. doi: 10.1073/pnas.68.4.820.

8. Knudson AG, Jr., Strong LC. Mutation and cancer: a model for Wilms’ tumor of the kidney. J Natl Cancer Inst. 1972;48(2):313–324. doi: 10.1093/jnci/48.2.313.

9. Hoglund M, Gisselsson D, Hansen GB, Mitelman F. Wilms tumors develop through two distinct karyotypic pathways. Cancer Genet Cytogenet. 2004;150(1):9– 15. doi: 10.1016/j.cancerencyto.2003.08.017.

10. Scott RH, Stiller CA, Walker L, Rahman N. Syndromes and constitutional chromosomal abnormalities associated with Wilms tumour. J Med Genet. 2006;43(9):705– 715. doi: 10.1136/jmg.2006.041723.

11. Huff V. Genotype/phenotype correlations in Wilms’ tumor. Med Pediatr Oncol. 1996;27(5):408–414. doi: 10.1002/(SICI)1096-911X(199611)27:5<408::AIDMPO4>3.0.CO;2-Q.

12. Rose EA, Glaser T, Jones C, et al. Complete physical map of the WAGR region of 11p13 localizes a candidate Wilms’ tumor gene. Cell. 1990;60(3):495–508. doi: 10.1016/0092-8674(90)90600-J.

13. Royer-Pokora B, Beier M, Henzler M, et al. Twenty-four new cases of WT1 germline mutations and review of the literature: genotype/phenotype correlations for Wilms tumor development. Am J Med Genet A. 2004;127A(3):249–257. doi: 10.1002/ajmg.a.30015.

14. Ruteshouser EC, Robinson SM, Huff V. Wilms tumor genetics: Mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosomes & Cancer. 2008;47(6):461–470. doi: 10.1002/gcc.20553.

15. Scott RH, Douglas J, Baskcomb L, et al. Constitutional 11p15 abnormalities, including heritable imprinting center mutations, cause nonsyndromic Wilms tumor. Nat Genet. 2008;40(11):1329–1334. doi: 10.1038/ng.243.

16. Baird PN, Santos A, Groves N, et al. Constitutional mutations in the WT1 gene in patients with Denys- Drash syndrome. Hum Mol Genet. 1992;1(5):301– 305. doi: 10.1093/hmg/1.5.301.

17. Barbaux S, Niaudet P, Gubler MC, et al. Donor splicesite mutations in WT1 are responsible for Frasier syndrome. Nat Genet. 1997;17(4):467–470. doi: 10.1038/ng1297-467.

18. Demmer L, Primack W, Loik V, et al. Frasier syndrome: a cause of focal segmental glomerulosclerosis in a 46,XX female. J Am Soc Nephrol. 1999;10(10):2215– 2218.

19. McDonald JM, Douglass EC, Fisher R, et al. Linkage of familial Wilms’ tumor predisposition to chromosome 19 and a two-locus model for the etiology of familial tumors. Cancer Res. 1998;58(7):1387–1390.

20. Rahman N, Arbour L, Tonin P, et al. Evidence for a familial Wilms’ tumour gene (FWT1) on chromosome 17q12-q21. Nat Genet. 1996;13(4):461–463. doi: 10.1038/ng0896-461.

21. Rivera MN, Kim WJ, Wells J, et al. An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science. 2007;315(5812):642–645. doi: 10.1126/science.1137509.

22. Wegert J, Wittmann S, Leuschner I, et al. WTX Inactivation Is a Frequent, but Late Event in Wilms Tumors Without Apparent Clinical Impact. Genes Chromosomes & Cancer. 2009;48(12):1102–1111. doi: 10.1002/gcc.20712.

23. DeBaun MR, Niemitz EL, McNeil DE, et al. Epigenetic alterations of H19 and LIT1 distinguish patients with Beckwith-Wiedemann syndrome with cancer and birth defects. Am J Hum Genet. 2002;70(3):604– 611. doi: 10.1086/338934.

24. Thavaraj V, Sethi A, Arya LS. Incomplete Beckwith-Wiedemann syndrome in a child with orbital rhabdomyosarcoma. Indian Pediatr. 2002;39(3):299–304.

25. Weksberg R, Nishikawa J, Caluseriu O, et al. Tumor development in the Beckwith- Wiedemann syndrome is associated with a variety of constitutional molecular 11p15 alterations including imprinting defects of KCNQ1OT1. Hum Mol Genet. 2001;10(26):2989– 3000. doi: 10.1093/hmg/10.26.2989.

26. Weksberg R, Squire JA. Molecular biology of Beckwith-Wiedemann syndrome. Med Pediatr Oncol. 1996;27(5):462–469. doi: 10.1002/(SICI)1096-911X(199611)27:5<462::AID-MPO13>3.0.CO;2-C.

27. Bliek J, Gicquel C, Maas S, et al. Epigenotyping as a tool for the prediction of tumor risk and tumor type in patients with Beckwith-Wiedemann syndrome (BWS). J Pediatr. 2004;145(6):796–799. doi: 10.1016/j.jpeds.2004.08.007.

28. Rahman N. Mechanisms predisposing to childhood overgrowth and cancer. Curr Opin Genet Dev. 2005;15(3):227–233. doi: 10.1016/j.gde.2005.04.007.

29. Pilia G, HughesBenzie RM, MacKenzie A, et al. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet. 1996;12(3):241–247. doi: 10.1038/ng0396-241.

30. Mariani S, Iughetti L, Bertorelli R, et al. Genotype/phenotype correlations of males affected by Simpson- Golabi-Behmel syndrome with GPC3 gene mutations: Patient report and review of the literature. J Pediatr Endocrinol Metab. 2003;16(2):225–232. doi: 10.1515/jpem.2003.16.2.225.

31. Green DM, Breslow NE, Beckwith JB, Norkool P. Screening of children with hemihypertrophy, aniridia, and Beckwith-Wiedemann syndrome in patients with Wilms tumor: a report from the National Wilms Tumor Study. Med Pediatr Oncol. 1993;21(3):188– 192. doi: 10.1002/mpo.2950210307.

32. Niemitz EL, Feinberg AP, Brandenburg SA, et al. Children with idiopathic hemihypertrophy and Beckwith-Wiedemann syndrome have different constitutional epigenotypes associated with Wilms tumor. Am J Hum Genet. 2005;77(5):887–891. doi: 10.1086/497540.

33. Henneveld HT, van Lingen RA, Hamel BCJ, et al. Perlman syndrome: four additional cases and review. Am J Med Genet. 1999;86(5):439–446. doi: 10.1002/(sici)1096- 8628(19991029)86:5<439::aidajmg9>3.0.co;2-4.

34. Perlman M, Goldberg GM, Bar-Ziv J, Danovitch G. Renal hamartomas and nephroblastomatosis with fetal gigantism: a familial syndrome. J Pediatr. 1973;83(3):414– 418. doi: 10.1016/s0022-3476(73)80264-1.

35. Hanks S, Coleman K, Reid S, et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet. 2004;36(11):1159–1161. doi: 10.1038/ng1449.

36. Matsuura S, Matsumoto Y, Morishima K, et al. Monoallelic BUB1B mutations and defective mitoticspindle checkpoint in seven families with premature chromatid separation (PCS) syndrome. Am J Med Genet A. 2006;140(4):358–367. doi: 10.1002/ajmg.a.31069.

37. Tischkowitz MD, Hodgson SV. Fanconi anaemia. J Med Genet. 2003;40(1):1–10. doi: 10.1136/jmg.40.1.1.

38. Ellis NA, Groden J, Ye TZ, et al. The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell. 1995;83(4):655–666. doi:10.1016/0092-8674(95)90105-1.

39. Evans DG, Birch JM, Thorneycroft M, et al. Low rate of TP53 germline mutations in breast cancer/sarcoma families not fulfilling classical criteria for Li-Fraumeni syndrome. J Med Genet. 2002;39(12):941–944. doi: 10.1136/jmg.39.12.941.

40. Tan MH, Teh BT. Renal neoplasia in the hyperparathyroidism-jaw tumor syndrome. Curr Mol Med. 2004;4(8):895–897. doi: 10.2174/1566524043359719.

41. Kallijarvi J, Lahtinen U, Hamalainen R, et al. TRIM37 defective in mulibrey nanism is a novel RING finger ubiquitin E3 ligase. Exp Cell Res. 2005;308(1):146–155. doi: 10.1016/j.yexcr.2005.04.001.

42. Karlberg N, Jalanko H, Perheentupa J, Lipsanen-Nyman M. Mulibrey nanism: clinical features and diagnostic criteria. J Med Genet. 2004;41(2):92–98. doi: 10.1136/jmg.2003.014118.

43. Kinoshita M, Nakamura Y, Nakano R, et al. Thirty-one autopsy cases of trisomy 18: clinical features and pathological findings. Pediatr Pathol. 1989;9(4):445– 457. doi: 10.3109/15513818909022365.

44. Rasmussen SA, Wong LY, Yang Q, et al. Populationbased analyses of mortality in trisomy 13 and trisomy 18. Pediatrics. 2003;111(4 Pt 1):777–784. doi: 10.1542/peds.111.4.777.

45. Conrad B, Dewald G, Christensen E, et al. Clinical phenotype associated with terminal 2q37 deletion. Clin Genet. 1995;48(3):134–139. doi: 10.1111/j.1399-0004.1995.tb04073.x.

46. Scott RH, Murray A, Baskcomb L, et al. Stratification of Wilms tumor by genetic and epigenetic analysis. Oncotarget. 2012;3(3):327–335. doi: 10.18632/oncotarget.468.

47. Ritchey ML, Green DM, Thomas PR, et al. Renal failure in Wilms’ tumor patients: a report from the National Wilms’ Tumor Study Group. Med Pediatr Oncol. 1996;26(2):75–80. doi: 10.1002/(SICI)1096-911X(199602)26:2<75::AID-MPO1>3.0.CO;2-R.

48. Davidoff AM. Wilms tumor. Adv Pediatr. 2012;59(1):247–267. doi: 10.1016/j.yapd.2012.04.001.

49. Grundy PE, Breslow NE, Li S, et al. Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor: a report from the National Wilms Tumor Study Group. J Clin Oncol. 2005;23(29):7312–7321. doi: 10.1200/Jco.2005.01.2799.

50. Messahel B, Williams R, Ridolfi A, et al. Allele loss at 16q defines poorer prognosis Wilms tumour irrespective of treatment approach in the UKW1-3 clinical trials: a Children’s Cancer and Leukaemia Group (CCLG) study. Eur J Cancer. 2009;45(5):819–826. doi: 10.1016/j.ejca.2009.01.005.

51. Wittmann S, Zirn B, Alkassar M, et al. Loss of 11q and 16q in Wilms tumors is associated with anaplasia, tumor recurrence, and poor prognosis. Genes Chromosomes & Cancer. 2007;46(2):163–170. doi: 10.1002/gcc.20397.

52. Lu YJ, Hing S, Williams R, et al. Chromosome 1q expression profiling and relapse in Wilms’ tumour. Lancet. 2002;360(9330):385–386. doi: 10.1016/S0140-6736(02)09596-X.

53. Szychot E, Apps J, Pritchard-Jones K. Wilms’ tumor: biology, diagnosis and treatment. Transl Pediatr. 2014;3(1):12–24. doi: 10.3978/j.issn.2224-4336.2014.01.09.

54. Gratias EJ, Jennings LJ, Anderson JR, et al. Gain of 1q is associated with inferior event- free and overall survival in patients with favorable histology Wilms tumor: a report from the Children’s Oncology Group. Cancer. 2013;119(21):3887–3894. doi: 10.1002/cncr.28239.

55. Hing S, Lu YJ, Summersgill B, et al. Gain of 1q is associated with adverse outcome in favorable histology Wilms’ tumors. Am J Pathol. 2001;158(2):393–398. doi: 10.1016/S0002-9440(10)63982-X.

56. Perotti D, Spreafico F, Torri F, et al. Genomic profiling by whole-genome single nucleotide polymorphism arrays in Wilms tumor and association with relapse. Genes Chromosomes Cancer.. 2012;51(7):644– 653. doi: 10.1002/gcc.21951.

57. Spreafico F, Bellani FF. Wilms’ tumor: past, present and (possibly) future. Expert Rev Anticancer Ther. 2006;6(2):249–258. doi: 10.1586/14737140.6.2.249.


Для цитирования:


Кулева С.А., Имянитов Е.Н. Опухоль Вильмса: синдромальная и молекулярная диагностика. Онкопедиатрия. 2017;4(4):283-289. https://doi.org/10.15690/onco.v4i4.1814

For citation:


Kulyova S.A., Imyanitov E.N. Wilm’s Tumor: Syndrome-Based and Molecular Diagnostics. Oncopediatrics. 2017;4(4):283-289. (In Russ.) https://doi.org/10.15690/onco.v4i4.1814

Просмотров: 161


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2311-9977 (Print)